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Abstract
A method based on parameter-induced stochastic resonance (PSR) is proposed
for the target echo detection in the presence of shallow-water reverberation.
The signals received by the horizontal sensor array are first preprocessed to
form the input to a bistable stochastic resonance (SR) system. The detection
decision is then made by a linear correlation detector based on the output
of this SR system. The performance of our proposed detection system, in
terms of deflections, is derived based on the solutions to the corresponding
Fokker–Planck equations (FPE). Using PSR-based techniques, the detection
performance can be optimized by tuning the system parameters properly. In
addition, numerical simulations are carried out to demonstrate the efficiency
and detection performance of our proposed detection system with receiver
operating characteristic (ROC) curves, and the results show that it has good
performance under the condition of the weak signal-to-reverberation-noise ratio
(SRR).

PACS numbers: 05.40.−a, 02.50.−r

1. Introduction

The target detection with active sonar is often limited by the presence of reverberation. It
has been an interesting and active research task to improve the detection performance in
the presence of shallow-water reverberation, which has been studied for a long time in the
acoustic signal processing area. In shallow water, reverberation mostly arises from the sea
bottom backscattering caused by the roughness of the sea bottom [1]. According to the point-
scattering model [2–4], reverberation can be treated as a random process constructed by a
linear superposition of individual echoes emanating from a large number of point reflectors
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Figure 1. Block scheme for detection.

distributed independently on the sea floor. Therefore, the signal-to-reverberation-noise ratio
(SRR) is often very weak. In addition, the reverberation noise is strongly correlated with
the transmitted signals. All these make it difficult to detect target echoes in the presence of
reverberation.

Since proposed by Benzi et al in 1981 to explain the periodicity of ice ages [5–7], stochastic
resonance (SR) has been an attractive research area and has been widely applied into a variety
of different fields. The counter-intuitive stochastic resonance phenomenon is caused by the
cooperation between the stochastic excited nonlinear system and the external deterministic
force. Under certain conditions, noise can play an active role in the improvement of system
performance. The traditional SR is realized by inserting an optimal amount of additional noise
into the SR system to maximize the chosen performance measure, such as the output signal-
to-noise ratio (SNR) [8–13]. Recently, a new approach called parameter-induced stochastic
resonance was proposed by Xu et al to realize the stochastic resonance phenomenon by tuning
system parameters without adding noise [14–17]. In signal detection theory, SR also plays
a very important role in improving the signal detectability. In [18], it has been shown that
the performance of detecting weak sinusoid signals can be improved via SR effect. For some
suboptimal detectors, such as sign detector, their performance can be enhanced by adding
some noise [19, 20]. In [21–23], techniques based on parameter-induced stochastic resonance
(PSR) are applied to binary signal processing and detection. Compared with matched filters,
PSR-based approaches have the advantage of being more robust [24, 25].

In this paper, we investigate the applications of PSR techniques to the target echo detection
in the presence of shallow-water reverberation. The detection scheme is shown in figure 1.
The signals received by the horizontal sensor array are preprocessed in order to extract the
echoes from environmental noise. In addition, the spatial frequency of the target echoes is
reduced to satisfy the sampling requirement. The preprocessed signals are then processed by
the bistable SR system before being sent to the linear correlation (LC) detector. In order to
overcome the problem caused by the fixed array length, an unfolding method is suggested to
form longer input signals in this detection system. The detection performance is affected by
the choice of the SR system parameter values, and thus can be optimized by tuning system
parameters properly. Through this research, we attempt to seek a way for applications of PSR
techniques to acoustic signal processing.

The rest of this paper is organized as follows. In section 2, the signal and noise models
are presented. In addition, the reasons and methods to preprocess the signals received by
the horizontal sensor array are introduced. In section 3, a linear correlation detector and the
approach to apply PSR techniques are proposed. The numerical simulations are carried out in
section 4 to verify the efficiency of our proposed detection system with the receiver operating
characteristic curves. Finally, conclusions are presented in section 5.
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Figure 2. Schematic model of target detection in shallow water.

2. Signal models and preprocessing

Assume that an active sonar emits a pure-tone pulse signal using a non-directive source with
frequency f0 (Hz) and duration T (s). There is a target body on the bottom at the range R � h

as shown in figure 2, where h is the depth of the sea. Here we assume that the specular
reflection of sea bottom is weak, so that normal-mode propagation is negligible. The target
echo which is a replica of the transmitted signal arrives at the horizontal array with the angle
θ . Thus, assuming that the time when the echo arrives at the first sensor is zero and there is
no phase shift, the spacetime target echo signal along the array is expressed as

starget(x, t) = A cos

(
2πf0t +

2πf0 cos θ

c
x

)
, −x cos θ

c
� t < T − x cos θ

c
, (1)

where A is the amplitude of the echo, c is the acoustic velocity and x is the coordinate of the
receiving sensor along the array. The receiving array, with a length of L, consists of sensors
disposed at positions r1, r2, r3, . . . , rN , and the coordinate of r1 is taken as zero.

According to the point-scattering model [2], the interfering reverberation R(x, t) can be
treated as a sum of echoes scattered by the scatterers distributed at the ensonified cirque on the
sea bottom, as shown in figure 2. As the number of scatters is large enough, the reverberation
can be approximated to a stochastic process with the Gaussian distribution and zero mean
value, which is stationary on one or two intervals of duration T. For a single-frequency pulse
signal, R(x, t) has the horizontal spatio-temporal coherence form [2, 26–28]

ρR(x, τ ) ≈ J0

(
2π |x|

λ

)(
1 − |τ |

T

)
cos 2πf0τ, (2)

where J0 is the zeroth-order Bessel function and λ is the wavelength of transmitted signal.
The total received signal along the sensor array is written as

sin(x, t) = starget(x, t) + R(x, t) + n(x, t), (3)

where n(x, t) is the environmental noise. In order to extract echoes from environmental noise,
the received signal of each sensor is convoluted with cos 2πf0t

s̄in(x, t) = 2

GtT

∫ T +tx

tx

sin(x, t − t ′) cos 2πf0t
′ dt ′

= s̄target(x, t) + R̄(x, t) + n̄(x, t),

(4)

where tx = t − xcos θ/c,Gt is the normalization constant and

s̄target(x, t) = 2

GtT

∫ T +tx

tx

starget(x, t − t ′) cos 2πf0t
′ dt ′, (5)

3
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R̄(x, t) = 2

GtT

∫ T +tx

tx

R(x, t − t ′) cos 2πf0t
′ dt ′, (6)

n̄(x, t) = 2

GtT

∫ T +tx

tx

n(x, t − t ′) cos 2πf0t
′ dt ′. (7)

Assuming M = T/f0 is an integer, we can obtain

s̄target(x, t) = Ā cos 2πf0

(
t +

cos θ

c
x

)
, (8)

where Ā = A/Gt . From equation (6), the power of R̄(x, t) is derived

σ 2
R̄ = E[R̄(x, t)2] = 2

3G2
t

σ 2
R, (9)

where σ 2
R is the power of R. For convenience, we can take Gt = √

6σR/3, and thus σ 2
R̄ is

normalized to 1. At the same time, the approximate spatio-temporal coherence of R̄(x, t) can
be derived:

ρR̄(x, τ ) ≈ J0

(
2π |x|

λ

)
cos 2πf0τ. (10)

Moreover, we can assume that the environmental noise is white and of very small power
intensity Dn:

E[n(x, t1)n(x, t2)] = 2Dnδ(t1 − t2), Dn → 0. (11)

From equation (7), the power of n̄(x, t) is

σ 2
n̄ = E[n̄(x, t)2] = 4

G2
t T

Dn → 0, (12)

which is quite weak compared with that of the reverberation noise R̄(x, t), and thus n̄(x, t) is
neglected hereafter.

From equation (8), the spatial frequency of the target echo in the array direction is
U = f0 cos θ/c. It is well known that realizing SR needs much higher sampling frequencies
relative to the input signal. However, the spatial sampling frequencies are limited by the sensor
interval l. In order to satisfy the sampling requirement, the signal received by each sensor is
delayed by τx depending on the sensor position. Based on the fact that

s ′
in(x, t) = s ′

target(x, t) + R′(x, t) = s̄in(x, t − τx), (13)

where τx = (L cos θ − kλ)x/Lc is the delayed time of the sensor at x, k is a number to be
determined, and the facts that

s ′
target(x, t) = Ā cos 2π

(
f0t +

k

L
x

)
, (14)

R′(x, t) = R̄(x, t − τx), (15)

the spatial frequency of the target echo is reduced to U ′ = k/L. From equations (10) and
(15), the spatial correlation of R′(x, t) can be derived as

CR′(x) = 〈R′(x0)R
′(x0 + x)〉 = σ 2

R̄J0

(
2π |x|

λ

)
cos(2πf0τx). (16)
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3. PSR processing and target detection

Before being sent to the LC detector, the preprocessed signal s ′
in(x, 0) is first processed by the

bistable system

dy

dx
= ay − by3 + s ′

in(x, 0)

= ay − by3 + Ā cos

(
2πk

L
x

)
+ R′(x, 0),

(17)

where a > 0, b > 0 are the system parameters and y is the system output.
Then the detection problem can be expressed as⎧⎪⎨

⎪⎩
H0 : s ′

in(x, 0) = R′(x, 0),

H1 : s ′
in(x, 0) = Ā cos

(
2πk

L
x

)
+ R′(x, 0),

(18)

where H1 and H0 are the two hypotheses with and without targets, respectively. We
have to decide which hypothesis is correct based on the system output y(x). Let Y =
[y(x1), y(x2), . . . , y(xN)]T be the output sample vector and h = [h1, h2, . . . , hN ]T be the
filter vector. Thus, LC detector based on the output is

S(Y) = hTY. (19)

The performance of such a detector can be evaluated by the deflection which is defined as [29]

De(S) = [E(S|H1) − E(S|H0)]2

var(S|H0)
. (20)

The larger the deflection De is, the better the detection performance will be. Denote the output
mean-value vectors under H0 and H1 as m0 and m1, respectively, and the covariance matrix
under H0 as R0. Thus, for the given m0, m1 and R0, the maximum deflection value can be
obtained when

h = R−1
0 (m1 − m0), (21)

which is the classical matched filter, and the deflection of this detector is

De = (m1 − m0)
TR−1

0 (m1 − m0). (22)

In order to derive m0, m1 and R0, we need to solve the Fokker–Planck equation (FPE)
related to equation (17). However, the exact solutions are very difficult to be obtained, and
thus we make some simplifications and approximations as follows.

First, the reverberation noise R′(x, 0) is approximated with the spatial Lorentzian colored
noise ξ(x), which has the correlation form

Cξ(x) = D

dx

exp

(
−|x|

dx

)
, (23)

where D is the noise intensity, dx is the correlation length, which can be determined by

D = σ 2
R′

/
(4UB), (24)

dx = D
/
σ 2

R′ , (25)

where UB is the bound of the spatial frequency of R′.
Second, the target echo s ′

target(x, 0) is approximated with a ladder function s(x)

s(x) = si, (i − 1)	x � x < i	x, 1 < i < I, (26)
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where every period of s ′
target(x, 0) is divided into I intervals with length of 	x, and in each

interval the target echo is treated as a constant value si which is the average in that interval.
Now, in each interval, equation (17) is approximated as

dy

dx
= ay − by3 + si + ξ(x), 0 < x < 	x. (27)

The FPE related to system (27) can be derived as [15]

∂Pi(y, x)

∂x
= − ∂

∂y
[ci(y)Pi(y, x)] + D

∂2

∂y2

[
1

1 − dxc
′
i (y)

Pi(y, x)

]
, (28)

where Pi(y, x) is the probability density of the output y in the ith interval, ci(y) = ay−by3+si ,
and c′

i (y) is its derivative. The solution of equation (28) can be obtained using the eigenfunction
expansion method [22]:

P1(y, x) ≈
N̄∑

n=0

a1n�1n(y) exp
(
−λ1n

x

2

)
+

⎡
⎣P1(y, 0) −

N̄∑
n=0

a1n�1n(y)

⎤
⎦ exp

(
−λ1(N̄+1)

x

2

)
,

(29)

Pi(y, x) ≈
N̄∑

n=0

ain�in(y) exp
(
−λin

x

2

)
+

⎡
⎣Pi−1(y,	x) −

N̄∑
n=0

ain�in(y)

⎤
⎦ exp

(
−λi(N̄+1)

x

2

)
,

(30)

where λin is the nth eigenvalue of equation (28) in the ith interval, �in(y) is the corresponding
eigenfunction and ain, n = 0, 1, . . . , N̄ , are constant coefficients. It is assumed that
0 = λi0 < λi1 � · · · � λi(N̄+1) and λi1 is called the system response speed in the ith
interval [16]. Thus, with the given initial probability density function P1(y, 0), Pi(y, x) can
be calculated from equation (30) recursively and then the mean-value vector m1 will be
obtained.

Under the H0 hypothesis, si will become zero in equation (27). When the system reaches
its stable status, the system output will have zero mean value all the time, and thus m0 = 0. In
addition, the transition probability density P0(y, x|y ′, 0) under H0 also obeys the same FPE

∂P0(y, x|y ′, 0)

∂x
= − ∂

∂y
[c0(y)P0(y, x|y ′, 0)] + D

∂2

∂y2

[
1

1 − dxc
′
0(y)

P0(y, x|y ′, 0)

]
, (31)

where c0(y) = ay − by3 and c′
0(y) is its derivative. Its solution also can be expanded as

P0(y, x|y ′, 0) ≈
N̄∑

n=0

a0n(y
′)�0n(y) exp

(
−λ0n

x

2

)

+

⎡
⎣δ(y − y ′) −

N̄∑
n=0

a0n(y
′)�0n(y)

⎤
⎦ exp

(
−λ0(N̄+1)

x

2

)
. (32)

Then we obtain the auto-correlation function of the output y under H0

ry(x) =
∫∫

yy ′P0(y, x|y ′, 0)P0(y
′) dy dy ′, (33)

where P0(y
′) is the stable probability density function of the output under H0. Based on these,

the covariance matrix R0 can be derived, and also the deflection measure De = mT
1 R−1

0 m1

can be calculated.
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a

a a

( )a

a

( )b

( )c ( )d

Figure 3. The relationships between the system efficiency De/L and parameter a for different
values of U ′, with D = 0.0167, dx = 0.0167, Ā = 0.1 and I = 6. (a) U ′ = 1/72, b̄ = 0.0046;
(b) U ′ = 1/36, b̄ = 0.085; (c) U ′ = 1/18, b̄ = 0.59; (d) U ′ = 1/9, b̄ = 2.97.

The values of m0, m1 and R0 will change with the values of system parameters a and
b, which, in turn, cause the change of the deflection measure De. Therefore, the system
parameters a and b must be tuned properly to maximize De. For every pair values of a and b,
the calculation of De needs to solve the corresponding FPEs. In [16], the parameters are tuned
to maximize the performance measure under the condition that the system response speed is
constant. Our research reveals that the maximizer a∗ is always very close to zero, and a small
change of a value will not cause the change of the system response speed. Based on these
facts, we propose a simplified algorithm to search for the values of the system parameters a
and b to maximize the detection performance. In this algorithm, we first let a be zero, and
then the system parameter b is tuned to the value b̄ to satisfy the condition that the average
system response speed λ̄1(0, b̄) = 1

I

∑I
i=1 λi1(0, b̄) = 3U ′. After this, we tune the system

parameter a to maximize De under the condition of b = b̄. The related optimization problem
can be constructed as follows:

max
a〉0,λ̄1(0,b)=3U ′

De. (34)

In figure 3, the relationships between the system efficiency De/L and the parameter a are
shown for different values of U ′. From this figure, we can note that the system efficiency can
be maximized by tuning the parameter a properly for signals with slow frequencies. However,

7
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SR system LC detector
y(x)

( )S Y
sampling

'( ,0)R x

Figure 4. The block scheme for simulating system.

the system efficiency will decrease monotonically with the parameter a, if the value of U ′

exceeds a certain value. In this case, we can just let a be zero.
Now we assume the length of input signals is large enough. According to the central limit

theorem, the output S(Y) of the LC detector can be treated as a Gaussian stochastic variable
with zero mean and the variance of var(S|H0) = hTR0h = De under H0 hypothesis. It is a
Gaussian random variable with the mean of E(S|H1) = hTm1 = De under H1 hypothesis.
The variance of S(Y) under H1 hypothesis also can be derived based on the solution to
the related FPEs. Our research further reveals that, under the condition of weak SRR, the
variances of S(Y) under both H1 and H0 are almost the same. For simplicity, we can take
var(S|H1) ≈ var(S|H0) = De in this paper. Now, the decision can be made as follows:

S(Y)

H1

>

<
H0

η, (35)

where η is the threshold which is determined according to the desired probability of false
alarm.

4. Numerical simulation and results

In order to verify the efficiency of our proposed detection system, numerical simulations are
performed. The simulation system is shown in figure 4. For simplicity, we assume that the
signals have been preprocessed, and thus our simulations start from equation (17). In order to
generate the reverberation noise, a white Gaussian noise is filtered by a designed filter so that
the correlation required by equation (16) can be satisfied. The generated noise is then added
to the target signal to form the noisy signal which will be sampled and sent to the SR system.
Finally, the output of the SR system is received and processed by the LC detector to make
decisions.

In our simulations, we assume that the active sonar emits a pulse with frequency
f0 = 15 kHz and duration T = 1 ms, and thus M = T/f0 = 15. A target echo arrives
at the sensor array with angle θ = 60◦. The interval between two adjacent sensors is
l = 0.05 m. In addition, we assume that the SRR of received signal is weak and has the value
of A2/2σ 2

R = 1/300, and thus Ā = T A/2Gt = √
6A/2σR = 0.1.

First, we assume the sensor array is of enough length. The relationships between the
maximum efficiency De/L and the reduced spatial frequency U ′ = k/L are shown in figure 5.
The line marked with ‘◦’ is obtained based on the theoretical analysis. Here we divide each
period of target signals into I = 6 intervals, and the target signals are considered to be constant
in each interval. The line marked with ‘�’ is obtained by the Monte Carlo simulations. It is

8
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1/72 1/36 1/18 1/9 2/9 1/3 5/9 2/3

0.06
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0.16

0.18

k /L

D
e/

L

Results of Monte Carlo simulations
Results of theoretical calculations

Figure 5. The relationships between the maximum efficiency De/L of the detection system in
figure 4 and reduced spatial frequency U ′ = k/L of the target signal.

noticed that the efficiencies obtained from theoretical analysis and simulations both decrease
with increasing U ′. However, when U ′ becomes higher, the simulation results will decrease
faster than the theoretical results. The reason is that the theoretical results are based on the
continuous system described by equation (17), while the simulation results are based on
the signals sampled by the sensors at the rate of Us = 1/l. When U ′ becomes larger enough,
the spatial sampling frequency Us will not satisfy the sampling requirement any more. This is
also the reason why the spatial frequencies of target echoes have to be reduced before being
processed.

Then, we assume that the sensor array is of the limited length L = 9 m. In order to
construct input signals with longer length, we propose an unfolding method. By letting

Case 1. k = 1, 2, 3, . . . ,

s ′′
in(x) = s ′

in

(
x − nL,

n

f0

)
= Ā cos

(
2πk

L
x

)
+ R′

(
x − nL,

n

f0

)
,

0 � x � L′ = ML, (36)

Case 2. k = 1
2 , 1

4 , 1
8 , . . . ,

s ′′
in(x) = s ′

in

(
x − nL,

nk

f0

)
= Ā cos

(
2πk

L
x

)
+ R′

(
x − nL,

nk

f0

)
,

0 � x � L′ = ML

k
, (37)

where n = 
x/L� is the floor number of x/L, the spacetime signal s ′
in(x, t) is unfolded to

a one-dimensional spatial signal s ′′
in(x) with the length of L′. Thus, the simulation system

is modified as shown in figure 6, where an unfolding block is inserted between the signal
generation block and the SR system.

9
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Generation
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Target
signal

SR system LC detector
y(x)

( )S Y
samplingUnfolding

algorithm

'( , )R x t

Figure 6. The modified block scheme for simulating system.

1/16 1/8 1/4 1/2 1 2 3 5 6
0

1

2

3

4

5

6

7

k

D
e

De from Monte Carlo simulations
De

m
 from calculations

Figure 7. The relationships between the maximum deflection De of the detection system in figure 6
and the parameter k.

The original theoretical results are obtained by treating R′(x − nL, n/f0), or R′(x −
nL, nk/f0) in case 2, in the same way as R′(x, 0). According to equation (10), the correlation
of R′(x − nL, n/f0), or R′(x − nL, nk/f0) in case 2, is varied with n. After adopting the
unfolding method, the original theoretical results should also be modified. It is obvious that
the mean values of S(Y) under both H0 and H1 will stay the same, and thus we only need to
change its variances to varm(S|H0) ≈ varm(S|H1) = αkDe, where αk is called the modified
coefficient. Hence, the deflection measure Dem = De/αk . The value of αk can be determined
from simulations. For case 1 and k = 1/2, we can get αk ≈ 0.37L′/L. For other cases, we
can get αk ≈ 0.18L′/L.

Figure 7 shows the relationships between the deflection measure and k. We can note that
the smaller the value of k is, the larger the deflection measure will be. If k > 1, there is almost
no change in the modified deflection Dem. However, when k > 3, the simulation results will
deviate from the theoretical results, because of the unsatisfied sampling requirement.

According to the binary test of equation (35), the probability of false alarm (H1 is accepted
when, in fact, H0 is true) and the probability of detection (H1 is accepted when, in fact, H1 is

10
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( )a ( )b

( )c ( )d

Figure 8. ROC curves of the detection system in figure 6 for different values of k. ROC curves
for (a) k = 1/8, (b) k = 1/4, (c) k = 1 and (d) k = 6.

true) can be expressed as

PFA =
∫ ∞

η

PS(x|H0) dx, (38)

PD =
∫ ∞

η

PS(x|H1) dx, (39)

where PS(x|H0) and PS(x|H1) are the probability density functions of the statistic S(Y) under
H0 and H1 hypotheses, respectively. As stated previously in the last paragraph of section 3,
S(Y) can be treated as Gaussian distributed with the same variance under both hypotheses.
Namely, there are

S(Y|H0) ∼ N(0, αkDe), S(Y|H1) ∼ N(De, αkDe), (40)

where N(m, σ 2) refers to the Gaussian distribution with mean m and variance σ 2. Thus,
equations (38) and (39) become

PFA ≈ 1

2
erfc

(
η√

2αkDe

)
, (41)

PD ≈ 1

2
erfc

(
η − De√

2αkDe

)
, (42)

11
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where erfc(x) = 2/
√

π
∫ ∞
x

exp(−t2) dt is the complementary error function. Both PD and
PFA are functions of the threshold η. The plot of PD versus PFA is called the receiver operating
characteristic (ROC) curve that describes the performance of the hypothesis test. Figure 8
demonstrates performances of our proposed detection system with ROC curves. In this
figure, the theoretical lines are derived from equations (41) and (42), and for the cases of
k = 1/8, k = 1/4 and k = 1, the ROC curves derived by the Monte Carlo simulations match
the theoretical results quite well. From this figure, we can also find that the smaller the value of
k is, the better the detection performance will be. However, when k < 1/4, the improvement
of detection performance is quite limited, and according to case 2 described by equation (37),
a smaller k will induce a larger L′, and in turn, will increase the computational load.

5. Conclusion

In this paper, parameter-induced stochastic resonance techniques are applied to the target
detection in the presence of shallow-water reverberation. For this purpose, the input signals
are preprocessed to form the inputs to the bistable SR system. In addition, the unfolding
method is suggested to construct signals with longer length for the sensor array with limited
length. Based on the solutions to the related FPEs, the performance of our proposed detection
system can be derived in terms of the deflection measure. The detection performance is
affected by the choice of the parameter values of the bistable stochastic resonance system,
and thus will be maximized by tuning system parameters properly based on PSR techniques.
The theoretical analysis and the efficiency of our proposed detection system are verified by
numerical simulations. Our research proposes a peculiar way to detect targets in the presence
of shallow-water reverberation. Our future work will focus on the target detection under
more complicated situations, such as directive sources, narrow band signals and non-Gaussian
reverberations.
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